
Seventh FRAMEWORK PROGRAMME 
FP7-ICT-2007-2 - ICT-2007-1.6 

New Paradigms and Experimental Facilities 
 

 
SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Deliverable D4.2:  
EUA Software Documentation 

 
 
 
 
 
 
 
 
  
Project description 
Project acronym: ECODE 
Project full title: Experimental Cognitive Distributed Engine  
Grant Agreement no.: 223936 
Document Properties 
Number: FP7-ICT-2007-2-1.6-223936-D4.2 
Title:  EUA Software Documentation 
Responsible: Laurent Mathy (ULANC)  
Editor(s): Matthew Jakeman (ULANC)   
Authors: Laurent Mathy, Matthew Jakeman, Steven Simpson (ULANC), Dimitri 
Papadimitriou (ALB) 
Dissemination level: Public (PU)    
Date of preparation: Date  
Version: 1.0     



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 
 
 

  
Deliverable D4.2                                                  Page 2/24 

Table of Contents 
 
1. Introduction ............................................................ 3 
2. Installation Procedures ................................................. 4 
2.1 Pre-Requisites....................................................... 4 
2.2 Compilation and Installation......................................... 4 
2.2.1 EUA Compilation.................................................. 4 
2.2.2 TCI Resolver..................................................... 4 

2.3 Configuring the System............................................... 5 
3. Software Features ....................................................... 6 
3.1 Remote interaction between MLEs...................................... 6 
3.1.1 Callback Techniques.............................................. 6 
3.1.1.1 Callback XRL Signatures ...................................... 6 
3.1.1.2 Hidden Callback Methods ...................................... 7 

3.1.2 The dispatch Method ............................................. 9 
3.1.2.1 Interface .................................................... 9 
3.1.2.2 Usage by MLP Implementations ................................ 10 
3.1.2.3 Usage by MP Implementations ................................. 10 

3.1.3 The direct_dispatch  Method .................................... 10 
3.1.3.1 Interface ................................................... 10 
3.1.3.2 Usage by MLP Implementations ................................ 11 
3.1.3.3 Usage by MP Implementations ................................. 11 

3.1.4 The dispatch_push  Method ...................................... 11 
3.1.4.1 Interface ................................................... 11 
3.1.4.2 Starting and stopping a push ................................ 12 
3.1.4.3 MP Registration ............................................. 12 

3.2 Asynchronous XRL Implementation..................................... 13 
3.2.1 The Call-Chaining Problem....................................... 13 
3.2.2 Providing Asynchronous XRL Implementations...................... 17 

4. User Guide ............................................................. 19 
4.1 Configuration....................................................... 19 
4.2 Starting XORP and the EUA........................................... 19 
4.2.1 TCI Resolver.................................................... 19 
4.2.2 EUA XORP Implementation......................................... 19 
4.2.2.1 PF_INET vs PF_UNIX .......................................... 20 
4.2.2.2 Binding to a Physical Interface ............................. 20 
4.2.2.3 Access Control .............................................. 20 
4.2.2.4 TCI Resolver ................................................ 21 
4.2.2.5 TCI Name .................................................... 21 
4.2.2.6 Full Example Router Manager Command ......................... 21 

4.3 Using the EUA via the XORP Shell.................................... 21 
4.3.1 Enabling and Configuring the TCI................................ 22 
4.3.1.1 Enabling the TCI ............................................ 22 
4.3.1.2 TCI Configuration Options ................................... 22 

4.3.2 Inbuilt Test MP's and MLP's..................................... 22 
Appendix A – Sample Configuration File .................................... 24 
 
 



FP7-ICT-2007-2 – ECODE: Experimental Cognitive Distributed Engine 
 
 

  
Deliverable D4.2                                                  Page 3/24 

1. Introduction 
This document accompanies the "machine learning engine" prototype deliverable 
D4.2. It describes the ECODE Unified Architecture (EUA) that enables Machine 
Learning Engines (MLE's) to execute on software based router platform. As a 
foundation the EUA uses the eXtensible Open source Routing Platform (XORP) 
and builds upon the functionality it offers to enable Machine Learning 
Engines (MLE's) to operate within a router. XORP provides a software platform 
that is used to turn regular PC's running Linux into a router platform. It 
provides mechanisms to implement extensions to the router known as XORP 
processes. These processes can communicate with the rest of the routing 
platform. The EUA is be implemented in the form of a number of these XORP 
processes. This document further details the functionality the EUA platform 
provides as well as providing information for users of the software with 
regards to installation and general usage instructions. 
 
This document is organised as follows. Section 2 details the installation 
procedure for the EUA. Section 3 details the features the EUA offers and 
Section 4 is structured as the software user manual. 
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2. Installation Procedures 
This section describes the procedures for installing the EUA software. 
Although the software should operate on any Unix based operating system it 
has only been comprehensively tested on Linux, specifically Ubuntu. Hence, it 
is highly recommended to run the EUA on an Ubuntu based machine and some of 
the instructions described in this section are Ubuntu specific. For notes on 
installation on other Operating Systems see the file xorp/BUILD_NOTES in the 
source tarball. 

2.1 Pre-Requisites 
There are a number of libraries required in order to compile the EUA source 
code. Both the GNU C and C++ compilers are needed. It is also necessary to 
install the SSL development libraries. XORP also uses a build system called 
scons which is not installed by default. The packages in the list below are 
recommended and can be obtained from Ubuntu's apt repositories: 

● gcc-4.3 
● g++-4.3 
● libssl-dev 
● scons 
● openssl 
● traceroute 
● iptables-dev 

 
Once all of these libraries have been installed the source code can be 
compiled and installed. 

2.2 Compilation and Installation 
This section outlines the compilation procedures for the EUA and the TCI 
resolver. 

2.2.1 EUA Compilation 
The compilation of XORP and the included EUA enhancements is performed using 
the scons  tool which should now have been installed. First, scons  needs to 
be executed inside of the xorp/  directory. This will compile all of the 
source code. However, because the EUA uses a new implementation of an 
asynchronous server inside of XORP a flag needs to be passed to scons  so the 
following command is used: 

● scons enable_async_server=True 
 
Once the compilation has successfully completed the binaries can be installed 
with the following command: 

● sudo scons enable_async_server=True install 
 
This command installs the compiled binaries into the usr/local/xorp/sbin  
directory. 
 
More information regarding the scons  build system can be obtained with the 
command: 

● scons –help 

2.2.2 TCI Resolver  
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The TCI resolver code is located within the resolver/  directory in the root 
of the source code tarball. Inside the directory, there is a build script 
which can be executed to compile the code. 
 
By executing the following two commands in the resolver/  directory the code 
will be compiled and the compiled binaries can be found in the src/  
directory created by the build.sh script: 
 

● chmod +x build.sh 
● ./build.sh 

2.3 Configuring the System 
In order to run the EUA a few settings are required on the host system. XORP 
requires that there is a xorp  group on the system and that the user running 
XORP is a member of that group.  
 
As XORP only runs as a root user the following commands are all prefixed with 
sudo  to give the appropriate user privileges. 
 

● sudo addgroup xorp 
● sudo adduser  root xorp 

 
Once this has been completed, the session needs to be restarted for the new 
group and user rights to apply. Logging out of the system and back in again 
will accomplish this. 
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3. Software Features 
The EUA offers a number of features to developers that enable the creation of 
Machine Learning Engines (MLEs) within a router. This functionality has been 
achieved by extending the XORP platform with two classes of XORP process 
(MLPs and MPs), and the realized Translation and Communication Interface 
(TCI) process that governs their interaction. 

3.1 Remote interaction between MLEs 
MLEs need raw measurements to operate on, and might need to obtain them from 
remote XORP routers. To support that, the EUA is built on an architecture 
that separates machine-learning logic from measurement, and includes a XORP 
process to facilitate the interaction. 
 
Machine-Learning Processes (MLPs) are XORP processes that implement specific 
Machine-Learning Engines. The EUA does not impose any additional constraints 
on them, except that they must be XORP processes, and so should normally 
communicate control messages via XORP's own IPC mechanism, XRLs. Other 
components of the architecture exist to support MLPs by performing 
measurement tasks, and coordinating remote communication. 
 
Measurement Processes (MPs) concentrate on providing basic input data to 
MLPs. A given MP will be concerned with a specific kind of measurement, e.g. 
one for round-trip times, one for bandwidth and throughput, and one for link 
availability. An MP may provide measurements in a single-shot mode or a push 
mode. For example, an MP providing round-trip times may provide an XRL 
command that performs several RTT measurements, and then finally returns an 
average after several turns. Alternatively, or additionally, it may provide 
an XRL command which takes a callback XRL to be invoked continually with the 
latest measurement. An MP is expected to support multiple clients (normally 
MLPs) but does not normally handle remote communication. 
 
The TCI is a specific XORP process that governs interaction between MLPs and 
MPs. Rather than an MLP asking an MP directly for a specific measurement, the 
MLP asks its local TCI to invoke the MP. This gives the TCI the opportunity 
to invoke a remote MP by interacting with a remote TCI located on the same 
XORP router as the MP. This feature is referred to as 'dispatching', and the 
TCI provides the single-shot form with no prior knowledge of the XRL types 
supported by the MPs. For push mode, an MP is required to register its push 
commands with the TCI before it can be invoked. 

3.1.1 Callback Techniques 
The dispatch  and dispatch_push  methods described below require the MLP to 
provide XRLs through which results are delivered. For dispatch  (Section 
3.1.2), these results are the out-arguments of the dispatched XRL. For 
dispatch_push  (Section 3.1.4), these are the data arguments pushed with each 
update. 
3.1.1.1 Callback XRL Signatures 
When a callback is invoked on the MLP, it will have no context to distinguish 
the received results from other invocations on the same XRL. The approach 
shown here allows the MLP's arbitrary context requirements to be met in 
combination with the arbitrary formats of the results which an MP can 
provide. 
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The signature of the callback XRL must include as in-parameters all 
parameters that the MLP needs as context, followed by all the MP's method's 
out-parameters. When the MLP invokes the MP, it passes a partial callback 
XRL, i.e. one containing only its own context arguments. When the callback is 
invoked (either by the MP or the TCI), the caller first completes it by 
appending each of the result arguments. The name cbxrl is conventionally 
used as the name of the string parameter that carries the callback XRL from 
the MLP towards the MP. 
 
For example, when dispatch  is used on and MP method with the following 
signature: 

ping ? host:ipv4 & tries:u32 & period:u32 -> delay: u32; 

then the callback method must have at least the following:  
// In interface myif/0.1, for example 
ping_result ? delay:u32; 

That is, its in-parameters match the out-parameters of the MP method. In 
this case, the MLP should use the following as its cbxrl :  
finder://mlp_name/myif/0.1/ping_result 

Note: the string mlp_name can be obtained by calling 
XrlRouter::class_name() . If the MLP implements a target node, it will 
likely be inheriting from an XrlStdRouter , which itself is an XrlRouter .  
 
If the MLP needs any context with the callback (e.g. the address that is 
being pinged), it can add it to cbxrl :  
finder://mlp_name/myif/0.1/ping_result?addr:ipv4=4. 3.2.1 

together with a corresponding change to the callback XRL's signature:  
// In interface myif/0.1, for example 
ping_result ? addr:ipv4 & delay:u32; 

It is possible that result arguments and context arguments will have the same 
name. To distinguish them, wherever a callback XRL is accepted, another 
string parameter is also accepted, which specifies a prefix to be used on the 
name of each appended result argument. The name cbpfx  is conventionally used 
as the name of the string parameter that specifies this prefix. 
 
To deal with XRL command errors, you may need a separate method to receive 
the error attributes:  
   // In interface myif/0.1, for example 
   ping_result ? addr:ipv4 & delay:u32; 
   ping_error ? addr:ipv4 & code:u32 & note:txt; 

Of course, you must then also pass a separate errxrl  alongside cbxrl :  
 finder://mlp_name/myif/0.1/ping_error?addr:ipv4=4. 3.2.1 

3.1.1.2 Hidden Callback Methods 
To receive the results of a dispatch  call, or the updates of a 
dispatch_push  call, it is not necessary to add a callback method to the 
MLP's public interface. Further, in the case of dispatch, where an XRL 
command error could be returned instead of a result, it is not necessary to 
define two separate callback methods, i.e., one for results and one for 
errors. Below, we show that it is possible to inject the handler for a method 
into an MLP's C++ implementation, which method is not declared in any 
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interface, and which can cope with both result and error calls between the 
XORP IPC mechanism and XRL argument marshalling. 
Suppose you have a class XrlMlpExampleNode to extend the generated class 
XrlEuaMlpExampleTargetBase . The convention may be to also extend 
XrlStdRouter :  
class XrlMlpExampleNode : public XrlStdRouter, 
                          public XrlEuaMlpExampleTargetBase, 
                          ... { 
}; 

When this class is instantiated, its XrlStdRouter  component will be 
initialized first. This initialization is necessary as 
XrlEuaMlpExampleTargetBase  will be passed that component's address as part 
of its configuration. XrlEuaMlpExampleTargetBase  then registers handlers 
with the XrlStdRouter  for all the target's methods. These handlers parse out 
specific arguments and pass them to your class's implementations of those 
methods. The idea is to inject a handler for an undeclared method to receive 
arguments in an untyped form (as far as C++ is concerned). For example, the 
handler would be declared as follows:  
const XrlCmdError 
XrlMlpExampleNode::ping_handler(const XrlArgs &in, XrlArgs *out) 
{ 
  // Prepare to receive arguments. 
  IPv4 host; 
  uint32_t delay; 
  string err_note; 
  uint32_t err_code; 
 
  // Do our own marshalling. 
  in.get("host", host); 
  try { 
    in.get("delay", delay); 
    // We got the result... 
 
  } catch (const XrlArgs::BadArgs &er) { 
    // Get the error code instead, but see note bel ow. 
    in.get("code", err_code); 
    in.get("note", err_note); 
  } 
 
  return XrlCmdError::OKAY(); 
}; 

It might appear that the class's own constructor could arrange to inject 
methods not declared on the implemented interfaces, but it can't because the 
XrlEuaMlpExampleTargetBase  will have finalized the XrlStdRouter by the 
time the constructor is called, so it can't receive any more methods.  
Extra methods can be injected like this:  
class XrlMlpExampleNode : public XrlStdRouter, 
                          DispatchCBs, // yes, between these two classes 
                          public XrlEuaMlpExampleTargetBase, 
                          ... { 
}; 

Then declare the class entirely in-line:  
struct DispatchCBs { // Probably give it a more distinctive name. 
  DispatchCBs(XrlCmdMap *cmds) { 
    if (!cmds->add_handler("myif/0.1/ping_cb", 
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                           callback(this, &DispatchCBs::ping_handler))) { 
      // Report an error. 
    } 
  } 
 
  virtual const XrlCmdError 
  ping_handler(const XrlArgs &in, XrlArgs *out) = 0; 
}; 

Of course, by inheriting this class, ping_handler  now has to be implemented, 
but this is the actual purpose of this exercise. Now if an XRL like this is 
supplied:  
finder://mlp_name/myif/0.1/ping_cb?and&the&args 

...as your cbxrl , the C++ method ping_handler  can be called with the given 
arguments plus any results from the MP via the TCI. 
Note, however, a restriction imposed by current XORP implementations.  
Although this technique permits both results and errors to be syntactically 
handled by the same function, it is not currently possible to capture the 
BadArgs exception that indicates an error. By omission, the XrlArgs::get  
functions have not been declared to throw BadArgs ; consequently, C++ forbids 
catching of BadArgs  when it happens, and abruptly terminates the process 
instead. Nevertheless, the technique is still valuable if two functions are 
defined to handle results and errors separately, or if errors cannot occur. 
Furthermore, future versions of XORP may include a simple fix that allows the 
exception to be caught. 

3.1.2 The dispatch Method 
This method allows an MLP (or, any XORP process) to invoke an arbitrary XRL 
on an MP (or any XORP process) via the TCI. Additionally, the TCI can be 
instructed to contact a remote TCI, and have that invoke an MP at that remote 
location. Results are returned to the MLP by it providing an XRL to be used 
as a callback. In effect, one duplex XRL invocation is turned into two 
simplex ones, one in each direction. 
 
The dispatch  method was provided as a stop-gap solution to the call-chaining 
problem encountered when attempting to implement remote dispatch within the 
TCI. We describe it here for completeness, but the direct_dispatch  method is 
superior (it is simpler to use by an MLP), and should be used in preference. 
3.1.2.1 Interface 
The definition of the dispatch  method in eua_tci/0.1  is:  
  dispatch ? tci_id:txt & euaxrl:txt & \ 
             cbxrl:txt & cbpfx:txt & errxrl:txt & e rrpfx:txt; 

An MLP is expected to invoke this method on its local TCI. The TCI will then 
invoke an XRL either on a local MP directly (if tci_id  is empty), or on a 
remote MP via another TCI (identified by tci_id , as passed to the TCI 
Resolver).  
euaxrl specifies the XRL that should be invoked on the MP by its local TCI. 
This does not vary as the MLP switches between making a local or remote 
dispatch call. 
There are no return parameters. The MLP's local TCI passes all results back 
by calling an XRL formed from the template cbxrl . Again, this does not 
depend on whether the MLP is making a local or remote dispatch call, as it 
will always be invoked by its local TCI. 
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The actual callback XRL is a combination of cbxrl  (which can include any 
arguments the MLP needs for context) and the out-arguments of the euaxrl  
invocation (i.e. the results), which are appended. 
 
To deal with errors, the XrlCmdError  is appended instead of the results in 
the form of two arguments, code:u32  and note:txt . The following arguments 
are normally blank but can be set to adjust the callback:  

● If not blank, errxrl  is an XRL template to be used instead of cbxrl if 
an error occurs.  

● On success, the value of cbpfx  is prefixed to the names of each result 
argument appended to cbxrl .  

● On error, the value of errpfx  is prefixed to the names of the two 
error arguments code  and note .  

3.1.2.2 Usage by MLP Implementations 
To invoke an MP's method indirectly through the TCI, the MLP must set up a 
callback method to receive the MP's out-arguments. This XRL method must have 
a signature combining any context arguments required by the MLP with the out-
arguments of the MP's XRL method, as covered in Section 3.1.1.1. The MLP may 
declare the method explicitly on one of its interfaces, or it may use the 
'hidden callback' technique shown in Section 3.1.1.2. 
3.1.2.3 Usage by MP Implementations 
Integration with the dispatch  method is trivial for MP implementations: 
simply provide an ordinary method with in- and out-parameters. In other 
terms, the MP need not take any special action. 
 
The TCI will await the out-arguments and change them into the in-arguments of 
another XRL. The MP will be unaware that the TCI is doing anything special, 
as it will just appear as an ordinary XRL method call. 

3.1.3 The direct_dispatch Method 
3.1.3.1 Interface 
The definition of the direct_dispatch  method in eua_tci/0.1  is:  
  // in eua_tci/0.1 
  direct_dispatch ? tci_id:txt & euaxrl:txt -> ret: binary; 

This method is meant as a replacement for dispatch  that takes advantage of 
the forthcoming “asynchronous method implementations” feature of XORP, which 
has already been incorporated into EUA. 
An MLP is expected to invoke the direct_dispatch  method on its local TCI. 
The TCI will then invoke an XRL on either a local MP directly (if tci_id  is 
empty), or a remote MP via another TCI (identified by tci_id , as passed to 
the TCI Resolver).  
euaxrl specifies the XRL that should be invoked on the MP by its local TCI. 
This does not vary as the MLP switches between making a local or remote 
dispatch call. 
Results are converted to a generic binary form before being returned to the 
MLP. The MLP should therefore convert ret  into an XrlArgs , and read the out-
arguments from that, according to the out-signature of the XRL specified by 
euaxrl . 
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If an error occurs in invoking the MP, an error will be returned from the 
direct_dispatch  call.  

3.1.3.2 Usage by MLP Implementations 
The caller will have to unmarshal out-arguments itself, as they are provided 
as a single binary argument in order for direct_dispatch  to be compatible 
with all MP methods. For example, if the MP method has the following 
signature:  
  ping ? host:ipv4 & tries:u32 & period:u32 -> dela y:u32; 

then the caller can extract the delay argument with the likes of:  
  void dispatched_ping_cb(const XrlError& xrl_error , 
                          const vector<uint8_t>* re t) 
  { 
    if (xrl_error.isOK()) { 
      assert(ret); 
 
      // 'ret' is a packed XrlArgs. 
      XrlArgs args; 
      args.unpack(&(*ret)[0], ret->size()); 
      uint32_t delay; 
      args.get("delay", delay); 
    } else { 
      // Something went wrong, crash probe told. 
    } 
  }; 

3.1.3.3 Usage by MP Implementations 
Integration with the direct_dispatch  method is trivial for MP 
implementations: simply provide an ordinary synchronous method implementation 
with in- and out-parameters, or a corresponding asynchronous implementation.  
In other words, the MP need not take any special action. 
 
The TCI will await the out-arguments from the MP, and convert them to a 
binary form. The MP will be unaware that the TCI is doing anything special, 
as it will just appear as an ordinary XRL method call.  

3.1.4 The dispatch_push Method 
This method aims to allow an MLP to receive continuous updates from a local 
or remote MP via the TCI. 
3.1.4.1 Interface 
The definition of the dispatch_push  method in eua_tci/0.1  is:  
  // in eua_tci/0.1 
 
  // to be called by MPs 
  register_push ? iface:txt & start:txt & stop:txt & \ 
                  cbname:txt & pfxname:txt & \ 
                  mediate:txt; 
 
  // to be called by TCIs 
  get_push ? iface:txt & name:txt \ 
          -> start:txt & stop:txt & \ 
             mediate:txt; 
 
  // to be called by MLPs 
  dispatch_push ? tci_id:txt & euaxrl:txt & \ 
                  cbxrl:txt & cbpfx:txt; 
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MPs must provide push methods in pairs, one starting a push, and one 
stopping. Parameters are divided into:  

● those which identify the data to be obtained (data-id ),  
● those which identify the recipient of the data (recv-id ),  
● those which control how the data is to be obtained, e.g. frequency 

(ctrl ).  
 

The first two groups, i.e., data-id  and recv-id , identify an interest.  
Pushing takes the form of repeated calls originally made by the MP to some or 
all of the interested parties (as specified by recv-id  arguments) with the 
relevant data (as specified by data-id  arguments). The MP's specification 
promises to include certain data parameters in each call.  
3.1.4.2 Starting and stopping a push 
An MLP is expected to invoke dispatch_push  method on its local TCI. The TCI 
will then invoke an XRL either on a local MP directly (if tci_id  is empty), 
or on a remote MP via another TCI (identified by tci_id , as passed to the 
TCI Resolver).  
euaxrl  specifies the XRL that should be invoked on the MP by its local TCI. 
This does not vary as the MLP switches between making a local or remote 
dispatch call. 
cbxrl must contain a partial callback XRL to be invoked when the MP has data 
to report to the MLP. Arguments already present on the XRL are simply echoed 
in that call, but arguments supplied by the MP are appended to complete the 
XRL, with their names prefixed with cbpfx . cbxrl  and cbpfx  together form 
the recv-id  arguments. 
A callback XRL can be set up in the MLP using the same techniques as for 
dispatch . Section 3.1.1.1 shows how the signature of the callback is 
determined. Section 3.1.1.2 shows how the callback XRL need not be declared 
in the MLP's interfaces. 
If an error occurs in invoking the MP, an error will be returned from the 
direct_dispatch  call. 
An interest is created or updated when euaxrl  identifies a start method, 
including data-id  and ctrl  arguments. The data-id  and recv-id  arguments 
together identify the interest. If an interest already exists with the same 
data-id  and recv-id  profile, the call is an update; otherwise, it is a 
creation. 
An interest is destroyed when euaxrl  identifies a stop method, including 
only data-id  and recv-id  arguments. Any existing interest with the same 
data-id  and recv-id  profile is destroyed. It is no error if no such interest 
exists. An interest may also be destroyed implicitly if the recipient no 
longer appears to be capable to receive data. 
3.1.4.3 MP Registration 
An MP must register its push methods with its local TCI by calling 
register_push . The start  argument is the name of the XRL method that starts 
a push, while stop  is the name of the method that stops it. Both methods 
must belong to the same interface, as identified by iface , which includes 
the finder target name. 
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cbname is the name of the parameter of the start  and stop  methods that 
specifies the XRL callback through which data would be pushed. pfxname  is 
the name of the parameter that specifies the prefix to be placed on the 
names of each of the data arguments supplied by the MP. In summary, 
pfxname  and cbname identify the recv-id  parameters.   
mediate  is a structured string describing ctrl parameters also required 
when starting or updating an interest. In future developments, it may also 
allow the mode of mediation to be specified on these parameters.  It 
currently has no effect, and should be left empty. 
get_push  retrieves parameters for the specified method name (and its 
partner) in the interface iface . This allows one TCI to query the 
information about an MP method available to another TCI.  

3.2 Asynchronous XRL Implementation 
The EUA is derived from a version of XORP that had a limitation in how XORP 
processes can implement XRL methods. XORP processes are designed to be 
single-threaded, operating via an event loop. An event could be the arrival 
of an XRL request or response, or a timed event, or the availability of data 
on a socket. The servicing of each event must complete before the next event 
is handled. This approach requires that a client invoking an XRL cannot block 
while waiting for an XRL response event, as it would be unable to service 
other events (e.g., XRL requests from other processes) while waiting. 
Instead, the client sets up a callback function (normally in C++) to service 
the response event, and then yields control back to the event loop. It might 
service several XRL requests from other processes while waiting for its own 
request to be answered. 
 
In contrast, when an XRL request is received, the process's C++ method that 
implements the XRL must pass the XRL results back as it returns control to 
the event loop. Although it can initiate new calls while it has control, it 
cannot use the results of those calls to provide results to its own caller, 
as it cannot receive the results it needs before returning to the event loop. 

3.2.1 The Call-Chaining Problem 
Figure 1 shows what happens at the client and server normally. At the client, 
some XORP-provided entity such as the event loop (EL), invokes application 
code. The application decides to make a call to the server, and prepares a 
callback (CB) to receive the out-arguments. Then it submits the call to the 
local XORP stack, providing in-arguments and CB. XORP generates an exportable 
reference to CB, and transmits that with the in-arguments to the remote node. 
It then returns control immediately (i.e. without waiting for a response) to 
the application, which then returns control to its caller, which could be the 
event loop. The out-arguments are returned with the exportable CB reference. 
When the EL is able to, it dispatches these to the CB indicated by the 
reference. Importantly, whether the response arrives before or after the 
application returns control to the EL, the EL cannot deliver the out-
arguments until that control is returned. On the server side, the in-
arguments are received and dispatched to the application. The application 
retains control while it computes the results, then returns them as it yields 
control back to the EL. 
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Figure 1: Basic XORP RPC 

Figure 2 shows what happens if a node acts as both a client and server, when 
in order to service a call (1), the node must also make a call (2) of its 
own, and use this nested call's results to compute the outer call's results. 
Call 1's in-arguments are received and dispatched to the application. It 
prepares to make call 2 by creating CB2 and then submits it with the in-
arguments for call 2. It must then yield control back to the EL for the out-
arguments of call 2 to be dispatched to its CB2. However, in doing so, it 
must return the out-arguments for call 1 immediately, i.e., before it 
receives out-args-2. Therefore, out-args-1 cannot be computed from out-args-
2. 
 

 
Figure 2: Server acting as client 

Figure 3 shows one work-around for the problem. Having initiated call 2, the 
application delegates, rather than yields, control to EL, allowing it to 
delay the return of out-args-1 until out-args-2 has been delivered to CB2. 
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However, this can lead to other problems. The first problem occurs if a 
second call is received by this node, and is answered by the delegation to 
the event loop; it will have to be completed before the original call can be. 
The second is that it requires the event loop software to be re-entrant, 
which is not a guaranteed behavior. 
    

 
Figure 3: Re-entrant call to event loop 

Figure 4 shows the alternative solution. The original duplex call has been 
split into two simplex calls; the duplex call's out-arguments become the 
second simplex call's in-arguments. The server returns call 1 immediately, 
and later receives the out-arguments it needs from the call that it initiated 
to service call 1. It then computes what would have been out-args-1 from out-
args-2, and passes them as the in-args of the second of the simplex calls 
back on the original node. 
    

  
Figure 4: Explicit Callback 
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Figure 5 shows a preferred solution, which has been implemented by making 
changes to the XORP trunk, and applying these changes selectively to the EUA. 
The server's event loop receives the incoming call 1, and sets up a callback 
CB1'. It is passed with call 1's in-arguments to the application code 
implementing the method. The server initiates call 2 by first preparing its 
callback CB2, and storing CB1' as context for that callback. Then it submits 
call 2's in-arguments with its own callback, and can then return control to 
EL immediately. Call 2 is completed when out-args-2 are delivered to EL, and 
forwarded to CB2. CB2 computes the results of the original call from out-
args-2, and passes them to CB1'. CB1' then completes the original call by 
passing the results back to the client. 
 
Note: a multi-threaded solution would be difficult to consider. First, if an 
XRL's implementation were to invoke a new thread without any special changes 
to the XORP libraries, that implementation would still not be able to return 
control to the event loop until the results from the thread had been obtained 
(because of the way the XRL implementation and the XORP framework interface), 
so the event loop would still be blocked. Second, XORP's libraries give full 
control over the handling of incoming XRL requests to the event loop, which 
would have to be replaced with something that could dispatch to multiple 
threads. Every other piece of XORP code assumes that it is executing in a 
single-threaded, event-driven environment, and would suddenly be faced with 
new concurrency issues. Even if such a change was only applied to a process 
which needed the feature, the whole process would be affected by concurrency 
issues, rather than just the specific XRLs that needed to take advantage of 
the feature. 
 

  
Figure 5: Server acting as client with asynchronous reply 
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3.2.2  Providing Asynchronous XRL Implementations 
The feature is enabled with enable_async_server=True  as an argument to 
scons when building and installing XORP. Its presence can be tested at 
compile time with the macro XORP_ENABLE_ASYNC_SERVER:  
#ifdef XORP_ENABLE_ASYNC_SERVER 
  // asynchronous implementations enabled 
#else 
  // ordinary XORP 
#endif 
 
When enabled, an XRL method can be implemented asynchronously by overriding a 
generated C++ method.   
 
If the XRL method is eua_ping_mp/0.1/ping , one would normally implement 
that by fulfilling the abstract method eua_ping_mp_0_1_ping :  
XrlCmdError 
XrlEuaPingMpNode::eua_ping_mp_0_1_ping(const IPv4 & host, 
                                       const uint32 _t &tries, 
                                       const uint32 _t &period, 
                                       uint32_t &de lay) 
{ 
  // ... Work out the delay ... 
 
  // Provide the results and return. 
  delay = ...; 
  return XrlCmdError::OKAY(); 
} 
 
Note: this method receives all in-arguments host , tries and period , and 
must supply the single out-argument delay  before returning a status code.  
 
It is still possible to provide that C++ method if a synchronous 
implementation is sufficient. However, to provide an alternative, 
asynchronous implementation, you must provide an additional function 
(overriding one generated by XORP from XRL interface files): 
void 
XrlEuaPingMpNode::async_eua_ping_mp_0_1_ping(const IPv4 &host, 
                                             const uint32_t &tries, 
                                             const uint32_t &period, 
                                             EuaPin gMp01PingCB cb) 
{ 
  // ... Work out the delay ... 
   
  // Provide the results and return. 
  delay = ...; 
  cb->dispatch(XrlCmdError::OKAY(), &delay); 
} 
 
This method differs from its synchronous counterpart in that it returns void  
instead of XrlCmdError , out-parameters are replaced with a single 
InterfaceVersionMethodCB  object, and its name is prefixed with “async_ ”. 
This method does not have to call cb->dispatch  before returning: 
void 
XrlEuaPingMpNode::async_eua_ping_mp_0_1_ping(const IPv4 &host, 
                                             const uint32_t &tries, 
                                             const uint32_t &period, 
                                             EuaPingMp01PingCB cb) 
{ 
  // Create a structure to hold ping info. 
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  ref_ptr<PingTask> info = new PingTask(host, tries, period, eventloop, cb); 
  tasks.push_back(info); 
 
  // Set it running.   
  info->start(); 
 
  // Assume that PingTask will call cb->dispatch later. 
} 
 
Note that it is still necessary to provide a synchronous implementation, as 
it is declared originally as a pure virtual function: 
XrlCmdError 
XrlEuaPingMpNode::eua_ping_mp_0_1_ping(const IPv4 &host, 
                                       const uint32_t &tries, 
                                       const uint32_t &period, 
                                       uint32_t &delay) 
{ 
  UNUSED(host); 
  UNUSED(tries); 
  UNUSED(period); 
  UNUSED(delay); 
#ifdef XORP_ENABLE_ASYNC_SERVER 
  return XrlCmdError::COMMAND_FAILED("asynchronous calls not enabled"); 
#else 
  return XrlCmdError::COMMAND_FAILED("unreachable code"); 
#endif 
} 
 
cb->dispatch(...)  can be invoked because the -> operator just yields the 
XORP Callback  reference providing the dispatch  method. However, this 
requires all arguments to be provided whether results are being returned:  

  EuaPingMp01PingCB cb; // parameter 
  delay = ...; 
  cb->dispatch(XrlCmdError::OKAY(), &delay); 
  // You have to pass OKAY! 
 
or reporting an error:  
  EuaPingMp01PingCB cb; // parameter 
  cb->dispatch(XrlCmdError::COMMAND_FAILED("Failure "), NULL); 
  // You have to pass NULL for each argument! 
 
Furthermore, each result argument can only be passed by storing in a 
variable, and returning that variable’s address. There is no means to pass a 
literal or an expression:  
  EuaPingMp01PingCB cb; // parameter 
  cb->dispatch(XrlCmdError::OKAY(), sum / successes ); // error 
 
Instead of using cb->dispatch , there are two methods which can be called on 
cb directly:  
  EuaPingMp01PingCB cb; // parameter 
  delay = ...; 
  cb.respond(delay); 

// No need to pass OKAY! 
 

  EuaPingMp01PingCB cb; // parameter 
  cb.respond(sum / successes); 

// No need to pass a pointer! 
 

  EuaPingMp01PingCB cb; // parameter 
  cb.fail(XrlCmdError::COMMAND_FAILED("Out of memor y!")); 
  // No need to pass any NULLs! 
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4. User Guide 
4.1 Configuration 
XORP requires a config  file to be present when it is executed to set its 
initial values. XORP is capable of generating a config  file but for use with 
the EUA a sample configuration file has been provided that will initialise 
some standard variables within XORP for use with the EUA and help users get 
started within the framework.  
 
The sample configuration file is located in the root directory of the source 
tarbull and is named eua-test . A directory needs to be created within 
/usr/local/xorp/  called etc  within which the config  file should be placed. 
XORP looks for a file named xorp.conf  by default so the simplest method to 
get up and running is to copy the eua-test  file to 
/usr/loca/xorp/etc/xorp.conf . The following commands (executed within the 
root directory of the EUA extracted tarbull) will create the directory and 
copy the config  file to the correct destination: 

● sudo mkdir /usr/local/xorp/etc 
● sudo cp eua-test /usr/local/xorp/etc/xorp.conf 

 
An example of EUA configuration file can also be found in Appendix A in this 
document. 

4.2 Starting XORP and the EUA 
There are two main programs that need to be running for the EUA to function 
correctly. The first is the TCI resolver which the EUA communicates with to 
resolve remote TCI's. The second is the EUA XORP implementation which 
provides the bulk of the functionality. 

4.2.1 TCI Resolver 
The binary for the TCI resolver can be found in the resolver/bin/  directory 
after following the compilation instructions in Section 2.  
 
Running the resolver is a simple matter of starting the resolver binary. 
This will open a socket on the host machine allowing EUA's to communicate 
with it. The default port that the resolver listens on is 3490 but this can 
be changed by altering the PORT #define  in resolver.h . 
 
The resolver can be run on a different machine to XORP if required. In fact 
if a number of instances of the EUA are going to be running it is 
preferential to have one central resolver that all the EUA's can communicate 
with. 

4.2.2 EUA XORP Implementation 
XORP consists of two main parts. The router manager is the backend for the 
router and is responsible for executing the appropriate code based on 
commands entered into the XORP shell (the other integral part of XORP). 
 
The simplest method to get started once the resolver has been started (and a 
config  file for XORP is in place) is to simply start the router manager and 
XORP shell. The binaries for the router manager and the XORP shell are both 
located in the directory /usr/local/xorp/sbin/.  
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The router manager needs to be started first as the XORP shell needs this to 
be running so it can connect to it. The command to start the router manager 
is: 

● sudo /usr/local/xorp/sbin/xorp_rtrmgr 
 
The router manager utilises a number of 2 second delays when it loads to 
ensure certain tasks have fully completed before others are started. With the 
EUA it is very important that the router manager is allowed to fully load 
before the XORP shell is initiated because certain operations (such as the 
TCI registration) need to have completed before the XORP shell connects. 
Because of this it is important to wait until a line similar to the following 
is visible in the router managers output before proceeding: 
[ 2011/07/29 14:05:14.676817  INFO xorp_rtrmgr:4534  RTRMGR 
rtrmgr/task.cc:2242 run_task ] No more tasks to run  
 
As soon as the “No more tasks to run ” line has been seen the XORP shell 
needs to be started. The binary for this is in the same location as the 
router manager and is called xorpsh . The following command can be used to 
start it: 

● sudo /usr/local/xorp/sbin/xorpsh 
 
There are a number of environment variables that can be set to alter the 
behaviour of the EUA via the router manager. Because it is most often the 
case that sudo is used to execute commands, the environment variables are 
best set through the command directly as some configurations of sudo will 
not let it inherit from its parent shell for security reasons. If this is the 
case the following form should be used. 

● sudo XORP_PF=t /usr/local/xorp/sbin/xorp_rtrmgr 
 
This would execute the /usr/local/xorp/sbin/xorp_rtrmgr  command and set 
the XORP_PF environment variable to t. 
4.2.2.1 PF_INET vs PF_UNIX 
XORP uses UNIX-domain sockets (PF_UNIX) by default, which do not permit 
inter-host communication to make the router more secure. You need to enable 
PF_INET sockets by setting an environment variable: 

● XORP_PF=t 

4.2.2.2 Binding to a Physical Interface 
Even if PF_INET sockets are used, XORP still only binds to 
localhost/127.0.0.1, so it is still only accessible locally. To override 
this, two steps must be taken: 

1. Tell the finder within the XORP node to use your physical interface 
with the -i  command-line switch. 

2. Tell all processes within XORP to use the same physical interface with 
the XORP_FINDER_CLIENT_ADDRESS environment variable. 

 
So, if your physical interface is 10.1.18.21, use this: 

● sudo XORP_PF=t XORP_FINDER_CLIENT_ADDRESS=10.1.18.21 xorp_rtrmgr -i 
10.1.18.21 

4.2.2.3 Access Control  
Before any remote node tries to communicate with your router, it will talk to 
the router's finder, which performs some access control to ensure the process 
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trying to communicate has required permission. Tell the finder to allow 
specific hosts with -a ip-addr ; use as many as necessary on the xorp_rtrmgr  
command. You can also use -n subnet for an address range. 

4.2.2.4 TCI Resolver 
When the TCI starts, it immediately connects to a resolver at TCP address 
localhost:3490. In practice, a resolver will have to be set up and made 
visible to all routers, and the default overridden by setting TCI_RESOLVER: 

● TCI_RESOLVER=our-resolver.ecode.eu 
 
If the port number is not the default of 3490 this also needs to be included. 
If for example the port being used is 4800 the following command could be 
used: 

● TCI_RESOLVER=our-resolver.ecode.eu:4800 

4.2.2.5 TCI Name 
When the TCI contacts the resolver, it registers itself under the default 
name TCI_ID. This will need to be overridden in any multi-TCI deployment, by 
setting the TCI_ID environment variable. For example: 

● TCI_ID=lancs_tci 

4.2.2.6 Full Example Router Manager Command 
The following is an example command setting all of the environment variables 
when starting the router manager.  

● sudo XORP_PF=t PING_TCI= TCI_RESOLVER=fake-resolver.ecode.eu 
XORP_FINDER_CLIENT_ADDRESS=192.168.0.9 /usr/local/xorp/sbin/xorp_rtrmgr 
-i 192.168.0.9 -n 192.168.0.0/16 

 
This command will start the router with the following options: 

● XORP Protocol Family as TCP 
● PING_TCI is used by the ping test. If blank, it per forms a local 

dispatch or direct_dispatch. Set it to the same as TCI_ID (whose 
default value is TCI_ID), and it will do a remote c all on 
itself. In this example it is blank so a local disp atch will be 
performed 

● The TCI Resolver is set to fake-resolver.ecode.eu, as no port 
has been specified the default port 3490 will be us ed. 

● XORP will use the physical interface which the IP a ddress 
192.168.0.9 is bound to to listen on. 

● The Finder will run on the interface 192.168.0.9 as  specified by 
the -i flag. 

● The subnet 192.168.0.0/16 will be allowed to commun icate with 
the finder as specified by the -n flag. 

4.3 Using the EUA via the XORP Shell 
The XORP shell allows users to configure the router manager and processes 
that it is running. This includes the EUA and associated XORP processes. This 
section describes how to enable and configure these processes. 
 
Before any commands can be issued within the XORP shell it is necessary to 
first enter the configuration mode. This can be achieved by typing the 
configure command when the shell has started. Within the shell it is 
possible to see what commands are available at any time with the ? command. 
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4.3.1 Enabling and Configuring the TCI 
4.3.1.1 Enabling the TCI 
Once configuration mode has been entered, the TCI requires enabling via the 
XORP shell before it can be utilised. This can be performed by issuing the 
following commands: 

● set eua tci enable true 
● commit 

 
The first command tells the shell the command to execute.  
 
The second command commits any previously uncommitted commands and executes 
them. It is important to remember to commit as without it the commands won't 
be executed. 
4.3.1.2 TCI Configuration Options 
There are 4 variables which can be set via the XORP shell to configure the 
TCI. The four commands allow the following functionality to be performed. 

1. Maximum number of MLP's the TCI will allow to connect 
2. Maximum number of MP's the TCI will allow to connect 
3. The priority of MLP's 
4. The priority of MP's 

 
The format for commands one and 2 is as follows: 

1. set eua tci mlp-pritory <MLP ID> prio <Priority Uns igned Integer 
Value> 

2. set eua tci mp-pritory <MP ID> prio <Priority Unsig ned Integer 
Value> 

 
After either of these commands has been used it is important to commit using 
the commit command within the shell. The format of commands 3 and 4 from the 
list above is as follows: 

1. set eua tci max-mlp <Max MLP Unsigned Integer Value > 
2. set eua tci max-mp <Max MP Unsigned Integer Value> 

 
Again after either of these commands has been issued it is important to 
commit them. 

4.3.2 Inbuilt Test MP's and MLP's 
The EUA comes with some inbuilt processes as examples of MLP's and MP's. They 
also serve as a method to test some of the TCI's functionality. The two 
processes that are bundled with the EUA are the Ping MP  and a testing MLP, 
Test MLP . The Ping MP offers some rudimentary ping functionality and the 
testing MLP contains some functionality for testing different areas of the 
TCI. 
 
To enable the processes the following commands are used: 

● Ping MP - set eua ping_mp enable true 
● Test MLP - set eua mle_test enable true 

 
Once either of these commands has been issued it needs to commit as 
previously described. 
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The Ping MP  has no other commands associated with it as it is simply used by 
other EUA XORP processes to perform measurements.  
 
The test MLP has some functionality that can be enabled via the shell for 
testing different aspects of the TCI. The different commands that can be used 
on the test MLP are as follows (all must be prefixed with set eua mle_test  
when inputting the commands to the XORP shell): 

● test_discover_mp - Test the TCI discover_mp functio nality on the 
PING-MP MP 

● test_dispatch - Test the TCI dispatch functionality  
● test_get_mps - Test the TCI get mps functionality 
● test_get_ping_methods - Test the TCI get_mp_methods  

functionality on the PING-MP MP 
 
Although the purpose of these commands is primarily for testing elements of 
the TCI they have been included with the EUA as they give a good basis for 
users to see what goes on behind the scene when they are executed. This is 
true both for how the router manager reacts to the commands (aided by the 
debug output from the router manager) and to the code that is used to 
implement them. Examining the code for these commands gives a good basis for 
writing commands in user XORP EUA processes. 
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Appendix A – Sample Configuration File 
 
* XORP configuration file 
* 
* Configuration format: 1.1 
* XORP version: 1.8-CT 
* Date: 2010/10/21 00:23:39.145335 
* Host: sim1 
* User: root 
*/ 
 
eua { 
    mle_test { 
        enable: false 
    } 
    mp_test { 
        enable: false 
    } 
    ping_mp { 
        enable: false 
    } 
    tci { 
        enable: false 
        max-mp: 16 
        max-mlp: 16 
    } 
} 
rtrmgr { 
    config-directory: "/etc/xorp" 
    load-file-command: "fetch" 
    load-file-command-args: "-o" 
    load-ftp-command: "fetch" 
    load-ftp-command-args: "-o" 
    load-http-command: "fetch" 
    load-http-command-args: "-o" 
    load-tftp-command: "sh -c 'echo Not implemented  1>&2 && exit 1'" 
    load-tftp-command-args: "" 
    save-file-command: "sh -c 'echo Not implemented  1>&2 && exit 1'" 
    save-file-command-args: "" 
    save-ftp-command: "sh -c 'echo Not implemented 1>&2 && exit 1'" 
    save-ftp-command-args: "" 
    save-http-command: "sh -c 'echo Not implemented  1>&2 && exit 1'" 
    save-http-command-args: "" 
    save-tftp-command: "sh -c 'echo Not implemented  1>&2 && exit 1'" 
    save-tftp-command-args: "" 
} 
 
 


